さりげなく多用されているオイラーの公式は,複素数と実数の橋渡しとしてかなり重要です. オイラーの公式はつぎの形をしています.

ここで,
は虚数単位,
は定数,
は変数です.
この公式は知らないととても困る上に恥ずかしいので,憶えておかなければなりません.
をべき級数展開するとつぎのようになります.

とりあえず
はこういうふうに展開できるのだと思っておいてください.
虚数単位
が入っているので,
で括っています.
でくくった方が虚数部分,もう一方が実数部分です.
式(2) と 式(1) のオイラーの公式を比べて見ると,実数部分が
で,
虚数部分が
なんでしょ,という気持ちになってきます.
その通りで
のべき級数はそれぞれつぎのようになります.


式(3) と 式(4) を 式(2) に代入すると,オイラーの公式

が得られます.なんだかだまされたような感じですが,とりあえずオイラーの公式は導けました.
「
の肩に虚数単位
が乗っていたら,
と
で表現できる」
ということを肝に命じておきましょう.
に負号がついて
になったときは,
で表したときの
の符号が変わるだけです.

また,上の2つの式を足し合わせると普通の
を
を使って表すことができます.
より 
より 
この関係も活躍するので憶えておくといいですね.