二階以上のテンソルで,成分の添字のうち,どれか二つを入れ替えても値が変わらないものを 対称テンソル と呼びます.
対称テンソルではどの添字を入れ替えても値が変わりません.一方,どれか添字を二つ入れ替えると符号が変わってしまうものを 反対称テンソル と呼びます.
反対称テンソルでは添字を入れ替える回数が偶数回なら元と同じ符号,奇数回なら元と逆の符号になります.
いままでに何度も出てきているクロネッカーのデルタ は対称テンソルです.計量テンソル
も,内積は可換ですから,定義より対称テンソルです.
反対称テンソルの例はいままで出てきていませんが,二つのベクトル から次のような二階のテンソルを作ると反対称テンソルになります.添字を入れ替えて確認してみて下さい.
ある座標系で対称テンソルであるテンソルは,座標変換をしても対称テンソルのままです.このことは座標変換の式を眺めてみれば分かります.
例として二階の対称テンソルを示しましたが,反対称テンソルも座標変換後によらず,常に反対称テンソルです.より高階のテンソルについても同様です.
theorem
座標変換しても,対称テンソルは対称テンソル,反対称テンソルは反対称テンソルのまま.
二階のテンソルは行列で表示すると便利ですが,対称テンソル と反対称テンソル
は行列表現で次のようになります.
の関係を考えれば,なぜこうなるのかすぐに分かります.
成分をよく見ると, には
種類,
には
種類しかないことが分かるでしょう.なお,
の成分では上三角の成分にマイナスをつけましたが,これは下三角の成分にマイナスをつけても構いません.この
と
という数字を見て,何か思いませんか?一般の二階のテンソルは
個の独立な成分を持ちましたから,一般の二階のテンソルを,
で,対称テンソルと反対称テンソルに分解できるのではないかという気がします.
この予想は正しく,非常に単純なことに,一般に二階のテンソル は常に対称テンソルと反対称テンソルの和に分解できます.
添字 を入れ替えれば
を得ますから,式
と連立して次式を得ます.
これは任意の二階のテンソル から,その対称部分と反対称部分を分離する公式だと言えます.
[*] | 混合テンソルの場合,式 ![]() ![]() |
[†] | 連続体力学において,連続体の変形を表わすのに二階のテンソルが活躍します.連続体の変位を ![]() ![]() ![]() ![]() ![]() |
【歪みテンソル】
【渦度テンソル】
【歪み速度テンソル】
【速度勾配テンソル】