この記事では
数式の表現方法を紹介します.
皆さんが
を使用する際の参考になれば幸いです.
なお微分演算子
や虚数単位
は立体で書いた方が良い,という意見があります.
本記事中では斜体,立体が入り交じっていますがご容赦ください.
| 表示項目 | 表示 | 入力 |
|---|---|---|
| 分数 式番号 | ![]() |
y=a/x=\frac{a}{x} \tag{88}. |
| 表示項目 | 表示 | 入力 |
|---|---|---|
| 上付添え字 | ![]() |
x^2+y^2=r^2 |
| 下付添え字 | ![]() |
_{\it n}\mathrm{C}_{\it r} = \frac{n!}{(n-r)!r!}, |
| 表示項目 | 表示 | 入力 |
|---|---|---|
| 1次微分 | ![]() |
\dot x = x^{\prime} = dx/dt=\frac{d x(t)}{d t}=\frac{d}{d t}\left(x(t)\right), |
| 2次微分 | ![]() |
\ddot x = x^{\prime \prime} = d^{2}x/dt^{2}=\frac{d^{2} x(t)}{d t^{2}}=\frac{d}{d t^{2}}\left(x(t)\right), |
| 積分 | ![]() |
\int f(x)dx, \ g(x)=\int^{x} f(x')dx', \ \int_{\alpha}^{\beta} f(x)dx. |
| 面積分,線積分 \rm≡\mathrm | ![]() |
\int\mspace{-11mu}\int_{S} f(x,y)\mspace{2mu}{\rm d}x \mspace{2mu}{\rm d}y, \quad \oint_{C} f(z){\rm d}z. |
| 偏微分 | ![]() |
\frac{\partial f(x,y)}{\partial x} =\partial_{x}f(x,y)=f_{x}(x,y), |
| 表示項目 | 表示 | 入力 |
|---|---|---|
| 列ベクトルと行列の表示 | ![]() |
\left( \begin{array}{cc} A^{1}\\ A^{2}\\ \end{array} \right) \left(\begin{array}{cc} g^{11} & g^{12} \\ g^{21} & g^{22} \\ \end{array} \right) \left( \begin{array}{cc} A_{1}\\ A_{2}\\ \end{array} \right). |
| 2点間のベクトル(上の長い矢) | ![]() |
\cos\left(\angle \mathrm{AOB}\right)= \frac{\overrightarrow{\mathrm{OA}}\cdot \overrightarrow{\mathrm{OB}}} {| \overrightarrow{\mathrm{OA}}| \cdot|\overrightarrow{\mathrm{OB}}|}. |
| ベクトル内積 dot-product | ![]() |
{\bm A}\cdot{\bm B} \equiv A_xB_x +A_yB_y +A_zB_z. |
| ベクトル外積 cross-product | ![]() |
{\bm A} \times {\bm B} &\equiv \begin{vmatrix}{\bm e}_{x} & {\bm e}_{y} & {\bm e}_{z} \\ A_x & A_y & A_z \B_x & B_y & B_z \end{vmatrix}. |
| 表示項目 | 表示 | 入力 |
|---|---|---|
| nabla演算子 | ![]() |
\nabla \equiv \frac{\partial}{\partial x}\bm{e}_{x} +\frac{partial}{\partial y}\bm{e}_{y} +\frac{\partial }{\partial z}\bm{e}_{z}. |
| gradient:勾配 | ![]() |
\mathrm{grad}\ f({bm r}) &=\overrightarrow{\bigtriangledown} f({\bm r})\\ &=\frac{\partial f({\bm r})}{\partial x}{\bm e}_{x} +\frac{\partial f({\bm r})}{\partial y}{\bm e}_{y} +\frac{partial f({\bm r})}{\partial z}{\bm e}_{z}, |
| divergence:発散 | ![]() |
\mathrm{div}{\bm E}({\bm r},t)&= nabla \cdot {\bm E}({\bm r},t),\\ &=\frac{\partial E_{x}({\bm r},t)}{\partial x} +\frac{\partial E_{y}({\bm r},t)}{\partial y} +\frac{\partial E_{z}({\bm r},t)}{\partial z}. |
| rotation:回転 | ![]() |
\mathrm{rot}{\bm H}({\bm r},t) &= \nabla \times {\bm H}({\bm r},t),\\ &=\begin{vmatrix}{\bm e}_{x} & {\bm e}_{y} & {\bm e}_{z}\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{partial}{\partial z} \ H_{x}({\bm r},t) & H_{y}({\bm r},t) & H_{z}({\bm r},t) \end{vmatrix}. |
| Laplacian(ラプラシアン:ラプラスの演算子) | ![]() |
\bigtriangleup &\equiv \left( \frac{\partial^2}{\partial x^2} +\frac{\partial^2}{\partial y^2} +\frac{\partial^2}{\partial z^2}\right) \\ &= \nabla^2 \\ &= \mathrm{div}\cdot\mathrm{grad}. |
ラプラスの方程式 ポアッソンの方程式 |
![]() |
\bigtriangleup \Psi({bm r}) &=0 & \Psi({bm r}): quad \text{harmonic function} \\ &\hookrightarrow text{Laplace eq.}\\ \bigtriangleup \Phi({bm r}) & = q({bm r}) && hookrightarrow \text{Poisson's equation} |
| 表示項目 | 表示 | 入力 |
|---|---|---|
| 複素数 成分により表示 | ![]() |
z=x+\mathrm{i}y =r\mathrm{e}^{+\mathrm{i}\theta} =r\left(\cos(\theta)+\mathrm{i}\sin(\theta)\right), \\ \bar z =x-\mathrm{i}y=r\mathrm{e}^{-\mathrm{i}\theta} =r\left(\cos(\theta)-\mathrm{i}\sin(\theta)\right). |
| オイラーの公式 | ![]() |
\mathrm{e}^{\mathrm{i}\theta} = \cos(\theta) + \mathrm{i}\sin(\theta) |
| オイラーの逆公式 | ![]() |
\cos(\theta) = \frac{\mathrm{e}^{\mathrm{i}\theta} + \mathrm{e}^{-\mathrm{i}\theta}}{2},\\ \sin(\theta) = \frac{\mathrm{e}^{\mathrm{i}\theta} - \mathrm{e}^{-\mathrm{i}\theta}}{2\mathrm{i}} |
| 表示項目 | 表示 | 入力 |
|---|---|---|
| 指数関数 ← 双曲線関数 | ![]() |
\mathrm{e}^{x} & = \cosh(x)+\sinh(x), \\ \mathrm{e}^{-x} & =\cosh(x)-\sinh(x) |
| 双曲線関数 ← 指数関数 | ![]() |
\cosh(x) & =\dfrac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2},\\ \sinh(x) & = \dfrac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2},\\ \tanh(x) & = \dfrac{\sinh(x)}{\cosh(x)} = \dfrac{\mathrm{e}^{x}-\mathrm{e}^{-x}} {\mathrm{e}^{x}+\mathrm{e}^{-x}}. |
| 式の横並び:簡易法 &&仕切り | ![]() |
u(x,0) =0, && u(0,t) =U, && u(\infty ,t) =0. |
| 表示/入力 | 表示/入力 | 表示/入力 | 表示/入力 |
|---|---|---|---|
\pm |
\circ |
\bullet |
\cdot |
\aleph |
\hbar |
\Re |
\Im |
\infty |
\emptyset |
\forall |
\exists |
\cap |
\cup |
\vee |
\wedge |
\subset |
\supset |
\sqsubset |
\sqsupset |
\subseteq |
\supseteq |
\vdash |
\dashv |
\in |
\notin |
\ni |
\not\ni |
\parallel |
\perp |
\sim |
\simeq |
\equiv |
\approx |
\propto |
\neq |
\le |
\ll |
\ge |
\gg |
| 表示 入力 | 表示 入力 |
|---|---|
\gets |
\longleftarrow |
\Leftarrow |
\Longleftarrow |
\to |
\longrightarrow |
\Rightarrow |
\Longrightarrow |
\leftrightarrow |
\longleftrightarrow |
\Leftrightarrow |
\Longleftrightarrow |
\mapsto |
\longmapsto |
\hookleftarrow |
\hookrightarrow |
\rightleftharpoons |
\upharpoonleft\hspace{-.24em}\downharpoonright |
\uparrow |
\downarrow |
\Uparrow |
\Downarrow |
\updownarrow |
\Updownarrow |
upharpoonleft |
downharpoonright |
| |
\| |
\{ x\} |
\lceil x \rceil |
\langle x \rangle |
\lfloor x \rfloor |
| 用法 | 表示 | 入力 |
|---|---|---|
| 賢いdots(カンマ区切り) | ![]() |
a_1,a_2,\dots,a_n. |
| 賢いdots(二項演算子) | ![]() |
a_1 + a_2 + \dots + a_n |
| 賢いdots(多項並べ) | ![]() |
a_1 a_2 \dots a_n |
| 賢いdots(多重積分) | ![]() |
\int \dots \int |
| dotsc (commas) | ![]() |
a_1,\dotsc |
| dotsb (binary op. or relations) | ![]() |
a_1 + \dotsb |
| dotsm (multiplications) | ![]() |
a_1 \dotsm |
| dotsi (integrals) | ![]() |
\int \dotsi |
| 表示/入力 | 表示/入力 | 表示/入力 | 表示/入力 |
|---|---|---|---|
\alpha |
\eta |
\nu |
\tau |
\beta |
\theta |
\xi |
\upsilon |
\gamma |
\iota |
omicron | \phi |
\delta |
\kappa |
\pi |
\chi |
\epsilon |
\lambda |
\rho |
\psi |
\zeta |
\mu |
\sigma |
\omega |
\Gamma |
\Theta |
\Xi |
\Upsilon |
\Delta |
\Lambda |
\Pi |
\Phi |
\Sigma |
\Psi |
||
\Omega |
|||
\varGamma |
\varTheta |
\varXi |
\varUpsilon |
\varDelta |
\varLambda |
\varPi |
\varPhi |
\varSigma |
\varPsi |
||
\varOmega |
| 表示 | 入力 | 表示 | 入力 | 意味 | 例 |
|---|---|---|---|---|---|
![]() |
\mathbb{N} | ![]() |
\mathbf{N} | 自然数の全体 | ![]() |
![]() |
\mathbb{Z} | ![]() |
\mathbf{Z} | 整数全体 | ![]() |
![]() |
\mathbb{Q} | ![]() |
\mathbf{Q} | 有理数全体 | ![]() |
![]() |
\mathbb{R} | ![]() |
\mathbf{R} | 実数全体 | ![]() |
![]() |
\mathbb{C} | ![]() |
\mathbf{C} | 複素数全体 | ![]() |